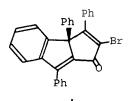
Guest(Solvent)-Dependent Enantioselective Crystallization of 7-Bromo-1,4,8-triphenyl-2,3-benzol3.3.0locta-2,4,7-trien-6-one As the Inclusion Complex


Fumio **Toda**^{*} and Koichi Tanaka

Department of Industrial Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790, Japan (Received **2***May* 1990)

Abstract: The optical resolution of the title compound is easily achieved by its preferential crystallization as an inclusion complex with the solvent used for the crystallization.

The title compound (1)¹ has been found to include a wide variety of solvent as guests and form crystalline inclusion crystals. In the inclusion crystallizations, racemates or conglomerates of 1 were formed depending on the choice of solvent. In the latter case, the inclusion crystals consisting of one enantiomer of 1 were formed preferentially and the optical resolution of 1 could be performed.

Recrystallization of rac 1 from the solvents shown in Table 1 gave a 1:1 inclusion crystal of the rac 1 with the solvent as yellow crystals (Table 1). On the other hand, recrystallization of the rac 1 from the solvents shown in Table 2 gave 1:1 inclusion crystals of the optically active 1 with the solvent as yellow crystals (Table 2). For example, recrystallization of the rac 1 (mp 185-186 °C) from THF gave a 1:1 inclusion complex of the optically active 1 and THF, each single crystal consisting of optically pure (+)- or (-) -1. By seeding with one crystal of optically pure 1 during the recrystallization of rac 1, a large quantity of the optically pure 1 could be obtained.

359

Rac Compound of 1 with Solvent (Guest)"								
Solvent(Guest)	Mp/°C	Photo- chromism	Solvent(Guest)	Mp/°C	Photo- chromism ^b			
VOL Me	112-115	+	Me	100-102	+			
\diamond	nd^{c}	+	PhNH ₂	59-61				
$\langle \rangle$	nd		N N	145-149				
O	109-112	+	Me2N-NMe2	177-179	-			
CHC13	101-105	+	Me0-OMe	159-165	+			
CHBr ₃	129-135		PhCl	88-90	+			
CH2C12	nd	+	i nei	00-90	ſ			
PhOMe	127-131	+	clCl	132-138	-+			

Table 1. Formation of 1:1 Inclusion Crystals of

^aAll inclusion compounds are formed as yellow crystals. ^bVarious colors appear depending on a kind of the solvent included. ^cNot distinct.

For example, to a solution of the rac 1 (10 g) in THF (50 ml) was added one piece of the crystal of the (+)-1·THF complex and the mixture kept at room temperature for 12 h to give the (+)-1·THF complex, after one recrystallization from THF, 0.81 g (14% yield, 100% ee, $[\alpha]_D^{20}$ +479.8 (*c* 0.21 in CHCl₃)). Distillation of THF from the complex in vacuo gave (+)-1 of 100% ee (0.7 g, 14% yield, mp 234-236 °C, $[\alpha]_D^{20}$ +480 (*c* 0.41 in CHCl₃)). To the filtrate left after filtration of the crude (+)-1·THF complex, one piece of the crystal of the (-)-1·THF complex was added and the solution was kept at room temperature for 12 h to give the (-)-1·THF complex, after two recrystallizations from THF, 1.1 g (19% yield, 100% ee, $[\alpha]_D^{20}$ -479.5 (*c* 0.20 in CHCl₃)). Distillation of THF from the complex in vacuo gave (-)-1 of 100% ee (0.96 g, 19% yield, mp 234-236 °C, $[\alpha]_D^{20}$ -480 (*c* 0.41 in CHCl₃)). Optical purity of the (+)- and (-)-1 was determined by HPLC using a column containing an optically active solid phase, YMC A-K03.

Some inclusion crystals summarized in Tables 1 and 2 showed photochromism and various colors appeared depending on a kind of solvent included. X-Ray crystal structural studies of the crystals which show this photochromism will be reported in the near future.

Rac Mixture of 1 with Solvent (Guest)							
Solvent(Guest)	Mp/°C	Photo- chromism ^b	Solvent(Guest)	Mp/°C	Photo- chromism ^b		
$\langle \rangle$	112-114			135-139	+		
∠o Me 2	nc^{c}		Me	98-102	t		
\bigcirc	120-125	+	N-Me	119-123	-		
Cot Me 3	nd	-	Mel	nd			
$\left(\begin{array}{c} \circ \\ \circ \end{array} \right)$	122-128	+	EtBr	na			
\sim	_		Et1	na			
L_H	nd		CC14	127-130	+		
	nd		CBr ₄	129-134	+		

Table 2. Formation of 1:1 Inclusion Crystals of Pac Mixture of 1 with Solvent (Cuest)^a

^aAll inclusion compounds are formed as yellow crystals. ^bVarious colors appear depending on a kind of the solvent included. ^cNot distinct.

It is interesting to note that the solvents which form complexes with rac 1 do not form complexes with optically active **1 and vice versa**. For example, the powdered (+)-1 obtained by the evaporation of THF from the (+)-1·THF complex turns to guest-free crystals by recrystallization from benzene. The difference of the role between the solvents shown in Tables 1 and 2 will be clarified by X-ray crystal structural studies of the inclusion complexes.

By using optically active **1** for the complexation, some guest compounds could be resolved. For example, when a solution of (-)-1 (1.3 g) in rac 2-methyltetrahydrofuran (2) (5 g) was kept at room temperature for 12 h, a 1:1 inclusion complex of (-)-1 and (-)-2 was formed as yellow prisms (1.32 g), which upon distillation gave $(R)-(-)-2^3$ of 32% ee (0.1 g, 4% yield, $[\alpha]_D^{20}$ -6.4 (c 0.96 in CHCl₃)). The optical purity was determined. by comparison of the $[\alpha]_D$ value with that of an authentic sample.³ By the same method, 2-methylpyran (3) was resolved by (-)-1 to give $(R)-(-)-3^3$ of 30% ee in 8% yield. Although the efficiency of the resolution is not high, chiral recognition between 1 and 2 or 3, which have no binding groups such as hydroxyl for hydrogen bonding, is interesting.

Further interesting enantioselective complexation between 1 and 3 has been observed. When a single crystal of $(+)-1\cdot(+)$ -3 complex was used to seed at the recrystallization of rac 1 (2.0 g) from rac 3 (20 g), inclusion crystals of (+)-1 of 99.0% ee and (+)-3 of 29.4% ee were obtained (0.22 g, 18.6% yield).

Acknowledgement

We wish to thank for the Ministry of Education, Science and Culture, Japan, for Grant-in-Aid for Scientific Research on Priority Areas, No. 63840017.

References and Notes

- F. Toda, M. Sasaoka, Y. Todo, K. Iida, T. Hino, Y. Nishiyama, H. Ueda, and T. Oshima, Bull. Chem. Soc. Jpn., 56, 3314 (1983).
- YMC A-K03 is available from Yamamura Chemical Laboratories Co. Ltd., Kyoto, Japan.
- 3. E. Keinan, K. K. Seth, and R. Lamed, J. Am. Chem. Soc., 108, 3474 (1986).